Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.098
Filtrar
1.
J Pathol ; 263(1): 8-21, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38332735

RESUMO

Pompe disease is a lysosomal storage disorder that preferentially affects muscles, and it is caused by GAA mutation coding acid alpha-glucosidase in lysosome and glycophagy deficiency. While the initial pathology of Pompe disease is glycogen accumulation in lysosomes, the special role of the lysosomal pathway in glycogen degradation is not fully understood. Hence, we investigated the characteristics of accumulated glycogen and the mechanism underlying glycophagy disturbance in Pompe disease. Skeletal muscle specimens were obtained from the affected sites of patients and mouse models with Pompe disease. Histological analysis, immunoblot analysis, immunofluorescence assay, and lysosome isolation were utilized to analyze the characteristics of accumulated glycogen. Cell culture, lentiviral infection, and the CRISPR/Cas9 approach were utilized to investigate the regulation of glycophagy accumulation. We demonstrated residual glycogen, which was distinguishable from mature glycogen by exposed glycogenin and more α-amylase resistance, accumulated in the skeletal muscle of Pompe disease. Lysosome isolation revealed glycogen-free glycogenin in wild type mouse lysosomes and variously sized glycogenin in Gaa-/- mouse lysosomes. Our study identified that a defect in the degradation of glycogenin-exposed residual glycogen in lysosomes was the fundamental pathological mechanism of Pompe disease. Meanwhile, glycogenin-exposed residual glycogen was absent in other glycogen storage diseases caused by cytoplasmic glycogenolysis deficiencies. In vitro, the generation of residual glycogen resulted from cytoplasmic glycogenolysis. Notably, the inhibition of glycogen phosphorylase led to a reduction in glycogenin-exposed residual glycogen and glycophagy accumulations in cellular models of Pompe disease. Therefore, the lysosomal hydrolysis pathway played a crucial role in the degradation of residual glycogen into glycogenin, which took place in tandem with cytoplasmic glycogenolysis. These findings may offer a novel substrate reduction therapeutic strategy for Pompe disease. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Glicoproteínas , Humanos , Camundongos , Animais , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/patologia , Doença de Depósito de Glicogênio Tipo II/terapia , Glicogênio/análise , Glicogênio/metabolismo , Glucosiltransferases/metabolismo , Músculo Esquelético/patologia , Lisossomos/metabolismo
2.
Parasitol Int ; 98: 102805, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37696330

RESUMO

Among the effects of the larval development of digenetic trematodes on their intermediate hosts, changes in the carbohydrate metabolism in the snails stand out. The aim of this study was to analyze, every 10 days after infection (d.p.i.), the effects of Paratanaisia bragai infection on the glycogen content in the digestive gland and cephalopedal mass in Subulina octona snail, and also verify the glucose concentration and the enzyme D- and L-lactate dehydrogenase activity (EC1.1.1.27 and EC1.1.1.28) (LDH) and the concentration of some metabolites(oxalic, succinic, pyruvic and lactic acid) presents in the hemolymph. Histochemical analisys were also performed. We verified a total increase of 54.81% in glucose concentration in infected snails and an oscillating pattern in the glycogen content in the cephalopedal mass and in the digestive gland. LDH activity shows an increase of 10 d.p.i. (+ 74.32%) and 40 d.p.i. (+ 47.81%) and decrease at 20 d.p.i. and 30 d.p.i. The concentrations of oxalic, succinic and pyruvic acids showed significant and progressive reductions; however, lactic acid had a significant increase. Histological and histochemical analysis showed a tissue disorganization in the cephalopedal mass of infected snails and morphological changes in the digestive gland. These results confirm that infection causes metabolic pathway changes in the snails due to activation of an alternative anaerobic pathway for producing energy, indicated by the increased lactic acid content and LDH activity.


Assuntos
Trematódeos , Animais , Caramujos , Glicogênio/análise , Glicogênio/metabolismo , Metabolismo dos Carboidratos , Glucose/análise , Glucose/metabolismo , Ácido Láctico , Interações Hospedeiro-Parasita
3.
Meat Sci ; 206: 109344, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778129

RESUMO

Reduction in muscle glycogen triggered by adverse antemortem handling events alters postmortem energy metabolism and results in a high ultimate pH and dark, firm and dry beef, often referred to as 'dark-cutting'. However, the relationship between atypical dark (AT) beef, postmortem energy metabolism and underlying tissue characteristics remains somewhat unclear. Cattle harvested in the US and Canada representing normal (pH < 5.6), AT dark (pH 5.6-5.8) and dark cutting (DC; pH > 5.8) beef were analyzed for tissue characteristics related to energy metabolism. Results show AT dark beef is more oxidative but similar to normal beef in glycolytic potential and nucleotide abundance. Mitochondria DNA content (P < 0.05, Canada; P < 0.005, US) and oxidative enzymes for DC and AT dark beef were greater (P < 0.01; Canada and US) compared to normal beef. Myoglobin tracked (P < 0.01) with color classification. These findings show both DC and AT beef are inherently more oxidative and raise the possibility that more oxidative muscle may be more prone to develop dark beef.


Assuntos
Músculo Esquelético , Carne Vermelha , Bovinos , Animais , Músculo Esquelético/química , Cor , Mioglobina/análise , Glicogênio/análise , Glicólise , Concentração de Íons de Hidrogênio , Carne Vermelha/análise
4.
Chemosphere ; 308(Pt 2): 136378, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36113651

RESUMO

Maximizing nutrient removal and minimizing greenhouse gas (GHG) emissions is imperative for the future of wastewater treatment. As municipalities focus on minimizing their carbon footprints, future permits could regulate GHG emissions from wastewater treatment plants. This study investigates how nitrous oxide (N2O) emissions are affected by dissolved oxygen and nitrite concentrations, providing potential strategies to meet possible gaseous emission permits. A lab-scale sequencing batch reactor (SBR) was enriched with aerobic granular sludge (AGS) capable of phosphate removal and simultaneous nitrification-denitrification (SND). N2O emissions were tracked at varying dissolved oxygen (DO) and nitrite (NO2-) concentrations, with >99% SND efficiency and 93%-100% phosphate removal efficiency. Higher DO and NO2- concentrations were associated with higher N2O emissions. Emissions were minimized at a DO concentration of 1 mg L-1, with an average emission factor of 0.18% of oxidized NH3-N emitted as N2O-N, which is lower than factors from many full-scale treatment plants (Vasilaki et al., 2019) and similar to a Nereda® full-scale AGS SBR (van Dijk et al., 2021). This challenges assertions that AGS emits more N2O than conventional activated sludge, although more research at full-scale with influent quality variations is required to confirm this trend. Molecular analyses revealed that the efficient SND was likely achieved with shortcut nitrogen removal facilitated by a low presence of nitrite oxidizing bacteria and a large population of denitrifying phosphate accumulating organisms, which far outnumbered denitrifying glycogen accumulating organisms.


Assuntos
Gases de Efeito Estufa , Esgotos , Reatores Biológicos/microbiologia , Desnitrificação , Glicogênio/análise , Gases de Efeito Estufa/análise , Nitrificação , Nitritos/análise , Nitrogênio/análise , Dióxido de Nitrogênio/análise , Óxido Nitroso/análise , Oxigênio/análise , Fosfatos/análise , Esgotos/microbiologia , Águas Residuárias/análise
5.
Biophys Chem ; 289: 106873, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35964448

RESUMO

Cardiovascular diseases are among the primary life-threatening conditions affecting human society. Intermittent fasting is shown to be functional in the prevention of cardiovascular diseases, however, the information on fasting-associated modifications in myocardial biomolecules is limited. This study aimed to determine the impact of 18-h intermittent fasting administered for five weeks on 12 months-old rats using supervised linear discriminant analysis and support vector machine algorithms constructed on spectrochemical data obtained from myocardial tissues. These algorithms revealed gross biomolecular modifications, while quantitative analyses demonstrated higher amounts of saturated lipids (19%), triglycerides (11%), and lipids (56%), in addition to enhancement in membrane dynamics (18%). The concentrations of nucleic acids and glucose are increased by 52%, while the glycogen content is diminished by 61%. The protein carbonylation/oxidation is reduced by 38%, whereas a 35% increase in protein content was measured. Phosphorylated proteins have been calculated to be at higher concentrations in the 13-62% range. The study findings demonstrated significant molecular changes in the myocardium of rats subjected to intermittent fasting.


Assuntos
Doenças Cardiovasculares , Jejum , Animais , Doenças Cardiovasculares/metabolismo , Jejum/metabolismo , Glicogênio/análise , Glicogênio/metabolismo , Humanos , Recém-Nascido , Lipídeos , Miocárdio/metabolismo , Ratos
6.
Mol Reprod Dev ; 89(9): 431-440, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35842832

RESUMO

Glucose is critical during early pregnancy. The uterus can store glucose as glycogen but uterine glycogen metabolism is poorly understood. This study analyzed glycogen storage and localization of glycogen metabolizing enzymes from proestrus until implantation in the murine uterus. Quantification of diastase-labile periodic acid-Schiff (PAS) staining showed glycogen in the glandular epithelium decreased 71.4% at 1.5 days postcoitum (DPC) and 62.13% at DPC 3.5 compared to proestrus. In the luminal epithelium, glycogen was the highest at proestrus, decreased 46.2% at DPC 1.5 and 63.2% at DPC 3.5. Immunostaining showed that before implantation, glycogen metabolizing enzymes were primarily localized to the glandular and luminal epithelium. Stromal glycogen was low from proestrus to DPC 3.5. However, at the DPC 5.5 implantation sites, stromal glycogen levels increased sevenfold. Similarly, artificial decidualization resulted in a fivefold increase in glycogen levels. In both models, decidualization increased expression of glycogen synthase as determine by immunohistochemistry and western blot. In conclusion, glycogen levels decreased in the uterine epithelium before implantation, indicating that it could be used to support preimplantation embryos. Decidualization resulted in a dramatic increase in stromal glycogen levels, suggesting it may have an important, but yet undefined, role in pregnancy.


Assuntos
Endométrio , Glicogênio , Primeiro Trimestre da Gravidez , Amilases/química , Animais , Endométrio/química , Endométrio/metabolismo , Feminino , Glucose/metabolismo , Glicogênio/análise , Glicogênio/metabolismo , Glicogênio Sintase/metabolismo , Camundongos , Reação do Ácido Periódico de Schiff , Gravidez , Primeiro Trimestre da Gravidez/metabolismo
7.
Physiol Rep ; 10(4): e15195, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179318

RESUMO

Mobilization of glycogen, the short-term storage form of glucose, is the body's first defense against hypoglycemia and is critical for energy provision during high intensity exercise. Therefore, to advance metabolic research, it is critical to be able to accurately measure glycogen concentrations, including during a prolonged fast and other glycogen-modulating interventions. Unfortunately, prior enzymatic methods of glycogen detection have been plagued by poor detection in the lower range, high sample mass requirements, and complicated and/or expensive protocols which introduce substantial technical variability into the measured glycogen concentrations. To address these limitations, here we report a streamlined and versatile glycogen extraction protocol coupled with an optimized phenol-sulfuric acid quantification protocol. With this method, we demonstrate how glycogen can be extracted from only 20 mg of tissue with one centrifugation step and quantified with a highly precise (Intra-assay %CV ranges from 5-10%) and sensitive (proportionality constant for glycogen = 0.07279 A.U./µg) assay. The cost of all materials equates to ~10 cents per sample. Therefore, this method represents an attractive means of assessing ex vivo tissue glycogen content including at the extremes of glycogen concentrations.


Assuntos
Glicogênio/análise , Animais , Fracionamento Celular/métodos , Fracionamento Químico/métodos , Glicogênio/metabolismo , Fígado/química , Fígado/metabolismo , Camundongos , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Fenol/química , Ácidos Sulfúricos/química
8.
J Clin Endocrinol Metab ; 107(3): e1193-e1203, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34665856

RESUMO

CONTEXT: Exercise blunts the effect of beta2-agonists on peripheral glucose uptake and energy expenditure. Whether such attenuation extends into recovery is unknown. OBJECTIVE: To examine the effect of a beta2-agonist on leg glucose uptake and metabolic rate in recovery from exercise. METHODS: Using leg arteriovenous balance technique and analyses of thigh muscle biopsies, we investigated the effect of a beta2-agonist (24 mg of oral salbutamol) vs placebo on leg glucose, lactate, and oxygen exchange before and during quadriceps exercise, and 0.5 to 5 hours in recovery from quadriceps exercise, as well as on muscle glycogen resynthesis and activity in recovery. Twelve healthy, lean, young men participated. RESULTS: Before exercise, leg glucose uptake was 0.42 ±â€…0.12 and 0.20 ±â€…0.02 mmol × min-1 (mean ±â€…SD) for salbutamol and placebo (P = .06), respectively, while leg oxygen consumption was around 2-fold higher (P < .01) for salbutamol than for placebo (25 ±â€…3 vs 14 ±â€…1 mL × min-1). No treatment differences were observed in leg glucose uptake, lactate release, and oxygen consumption during exercise. But in recovery, cumulated leg glucose uptake, lactate release, and oxygen consumption was 21 mmol (95% CI 18-24, P = .018), 19 mmol (95% CI 16-23, P < .01), and 1.8 L (95% CI 1.6-2.0, P < .01) higher for salbutamol than for placebo, respectively. Muscle glycogen content was around 30% lower (P < .01) for salbutamol than for placebo in recovery, whereas no treatment differences were observed in muscle glycogen resynthesis or glycogen synthase activity. CONCLUSION: Exercise blunts the effect of beta2-agonist salbutamol on leg glucose uptake, but this attenuation diminishes in recovery. Salbutamol increases leg lactate release in recovery, which may relate to glycolytic trafficking due to excessive myocellular glucose uptake.


Assuntos
Albuterol/administração & dosagem , Exercício Físico , Glucose/metabolismo , Glicogênio/biossíntese , Músculo Esquelético/efeitos dos fármacos , Adulto , Biópsia , Metabolismo Energético , Glucose/análise , Glicogênio/análise , Glicólise/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Ácido Láctico/análise , Ácido Láctico/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Coxa da Perna
9.
Meat Sci ; 183: 108641, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34365254

RESUMO

The aim of this study was to investigate the course of glycogenolysis, ATP breakdown and fragmentation of myofibrillar proteins in the semitendinosus muscle of a progeny of Limousin×Holstein-Friesian (LMx) and Charolaise×Holstein-Friesian (CHx) (bulls and steers) and to describe the changes in the above parameters over time and its relationship with beef texture. The hypothesis that beef from bulls and steers of different crossbreeds required the same ageing time to achieve satisfactory tenderness was also tested. Cattle crossbreeding did not affect the amount of muscle glycogen, and castration did not differentiate it until 3 h post-mortem. The interaction between crossbreeding and castration was found, and the highest shear force values were observed in CHx bulls, whereas the lowest was in CHx steers. Beef obtained from CHx was found to be more predestined to short ageing, and LMx required longer ageing to achieve good tenderness. The R-values more strongly influenced subsequent beef texture than pH values.


Assuntos
Músculo Esquelético/química , Carne Vermelha/análise , Resistência ao Cisalhamento , Trifosfato de Adenosina/metabolismo , Animais , Bovinos , Manipulação de Alimentos/métodos , Glicogênio/análise , Hibridização Genética , Concentração de Íons de Hidrogênio , Masculino , Proteínas Musculares/metabolismo , Miofibrilas/química , Orquiectomia/veterinária , Fatores de Tempo
10.
J Sci Food Agric ; 102(6): 2464-2471, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34642961

RESUMO

BACKGROUND: The abnormal ultimate pH (pHu ) in postmortem muscles affect the meat quality and results in substantial economic losses. Dark, firm, and dry (DFD) meat linked with the higher postmortem pHu values and exhibited many quality issues such as dark color, tough texture and shorter shelf life. This research aimed to investigate the effect of protein phosphorylation on variations in beef pHu in order to explore the possible mechanisms underlying DFD meat formation. RESULTS: Glycogen and lactate contents were higher, while L* and a* were lower in high pHu beef. Shear force was higher in intermediate pHu group. Global phosphorylation of sarcoplasmic proteins was higher in low pHu samples on day 1 and of myofibrillar proteins was higher in intermediate pHu meat on days 1 and 2 postmortem. Sarcoplasmic protein bands with different phosphorylation levels were identified as containing some glycometabolism and stress response proteins and phosphorylated myofibrillar protein bands were identified sarcomeric and metabolic proteins. CONCLUSIONS: Phosphorylation of multiple proteins of glycolytic pathway and contractile machinery may play critical roles in development of DFD beef. © 2021 Society of Chemical Industry.


Assuntos
Músculo Esquelético , Fosfoproteínas , Animais , Bovinos , Glicogênio/análise , Concentração de Íons de Hidrogênio , Carne/análise , Músculo Esquelético/química , Fosfoproteínas/metabolismo
11.
Nutrients ; 13(7)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34371881

RESUMO

Researchers and practitioners in sports nutrition would greatly benefit from a rapid, portable, and non-invasive technique to measure muscle glycogen, both in the laboratory and field. This explains the interest in MuscleSound®, the first commercial system to use high-frequency ultrasound technology and image analysis from patented cloud-based software to estimate muscle glycogen content from the echogenicity of the ultrasound image. This technique is based largely on muscle water content, which is presumed to act as a proxy for glycogen. Despite the promise of early validation studies, newer studies from independent groups reported discrepant results, with MuscleSound® scores failing to correlate with the glycogen content of biopsy-derived mixed muscle samples or to show the expected changes in muscle glycogen associated with various diet and exercise strategies. The explanation of issues related to the site of assessment do not account for these discrepancies, and there are substantial problems with the premise that the ratio of glycogen to water in the muscle is constant. Although further studies investigating this technique are warranted, current evidence that MuscleSound® technology can provide valid and actionable information around muscle glycogen stores is at best equivocal.


Assuntos
Glicogênio/análise , Interpretação de Imagem Assistida por Computador/métodos , Músculo Esquelético/diagnóstico por imagem , Avaliação Nutricional , Ciências da Nutrição e do Esporte/métodos , Ultrassonografia/métodos , Humanos , Estado de Hidratação do Organismo , Reprodutibilidade dos Testes , Software
12.
Alcohol Clin Exp Res ; 45(10): 2130-2146, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34342027

RESUMO

BACKGROUND: Maternal choline supplementation in rats can ameliorate specific neurological and behavioral abnormalities caused by alcohol exposure during pregnancy. We tested whether choline supplementation ameliorates fetal growth restriction and molecular changes in the placenta associated with periconceptional ethanol exposure (PCE) in the rat. METHODS: Sprague Dawley dams were given either 12.5% ethanol (PCE) or 0% ethanol (Con) in a liquid diet from 4 days prior to 4 days after conception. At day 5 of pregnancy, dams were either placed on a standard chow (1.6 g choline/kg chow) or an intermediate chow (2.6 g choline/kg chow). On day 10 of pregnancy, a subset of the intermediate dams were placed on a chow further supplemented with choline (7.2 g choline/kg chow), resulting in 6 groups. Fetuses and placentas were collected on day 20 of pregnancy for analysis. RESULTS: Choline supplementation resulted in increased fetal weight at late gestation, ameliorating the deficits due to PCE. This was most pronounced in litters on a standard chow during pregnancy. Choline also increased fetal liver weight and decreased fetal brain:liver ratio, independent of alcohol exposure. Placental weight was reduced as choline levels in the chow increased, particularly in female placentas. This resulted in a greater ratio of fetal:placental weight, suggesting increased placental efficiency. Global DNA methylation in the placenta was altered in a sex-specific manner by both PCE and choline. However, the increased glycogen deposition in female placentas, previously reported in this PCE model, was not prevented by choline supplementation. CONCLUSIONS: Our results suggest that choline has the potential to ameliorate fetal growth restriction associated with PCE and improve placental efficiency following prenatal alcohol exposure. Our study highlights the importance of maternal nutrition in moderating the severity of adverse fetal and placental outcomes that may arise from prenatal alcohol exposure around the time of conception.


Assuntos
Colina/administração & dosagem , Etanol/efeitos adversos , Fertilização , Retardo do Crescimento Fetal/prevenção & controle , Feto/efeitos dos fármacos , Placenta/efeitos dos fármacos , Animais , Encéfalo/embriologia , Colina/sangue , Metilação de DNA , Suplementos Nutricionais , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Retardo do Crescimento Fetal/induzido quimicamente , Glicogênio/análise , Fígado/embriologia , Tamanho do Órgão/efeitos dos fármacos , Placenta/química , Placenta/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley
13.
Lipids Health Dis ; 20(1): 64, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229671

RESUMO

BACKGROUND: Intensive-insulin treatment (IIT) strategy for patients with type 1 diabetes mellitus (T1DM) has been associated with sedentary behaviour and the development of insulin resistance. Exercising patients with T1DM often utilize a conventional insulin treatment (CIT) strategy leading to increased insulin sensitivity through improved intramyocellular lipid (IMCL) content. It is unclear how these exercise-related metabolic adaptations in response to exercise training relate to individual fibre-type transitions, and whether these alterations are evident between different insulin strategies (CIT vs. IIT). PURPOSE: This study examined glycogen and fat content in skeletal muscle fibres of diabetic rats following exercise-training. METHODS: Male Sprague-Dawley rats were divided into four groups: Control-Sedentary, CIT- and IIT-treated diabetic sedentary, and CIT-exercised trained (aerobic/resistance; DARE). After 12 weeks, muscle-fibre lipids and glycogen were compared through immunohistochemical analysis. RESULTS: The primary findings were that both IIT and DARE led to significant increases in type I fibres when compared to CIT, while DARE led to significantly increased lipid content in type I fibres compared to IIT. CONCLUSIONS: These findings indicate that alterations in lipid content with insulin treatment and DARE are primarily evident in type I fibres, suggesting that muscle lipotoxicity in type 1 diabetes is muscle fibre-type dependant.


Assuntos
Diabetes Mellitus Experimental/terapia , Insulina/uso terapêutico , Músculo Esquelético/patologia , Condicionamento Físico Animal , Animais , Glicemia/análise , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Gorduras/análise , Glicogênio/análise , Masculino , Músculo Esquelético/química , Músculo Esquelético/efeitos dos fármacos , Condicionamento Físico Animal/métodos , Ratos , Ratos Sprague-Dawley
14.
Forensic Sci Int ; 325: 110896, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34243037

RESUMO

Fatal starvation is rarely seen in developed countries; when it occurs, it may be associated with medicolegal problems. Forensic pathologists are required to determine leading causes of death and provide opinions on the influence of starvation, especially in cases of suspected child abuse. Recently, starvation-induced steatosis was suggested to be regulated by lipophagy. Here, we report an extremely rare case of death by malnutrition of a 10-year-old boy, who was fed only infant formula throughout his life. The deceased presented with severe hepatic steatosis, probably related to prolonged malnutrition. Fatty liver changes, with deposition of small lipid droplets deposited in the peripheral lobules. High levels of P62 protein (overexpression of which indicates an autophagy impairment) were seen around the central vein region, whereas light-chain-3 (LC3) protein (an indicator of lipophagy activation) was unremarkable. Thus, in our case, impaired lipophagy influenced starvation-induced steatosis. To our knowledge, this article is the first to evaluate the application of lipophagy in forensic investigations as an objective diagnostic criterion.


Assuntos
Transtornos da Nutrição Infantil/etiologia , Fórmulas Infantis/efeitos adversos , Inanição , Autofagia , Criança , Transtornos da Nutrição Infantil/complicações , Desidratação/complicações , Evolução Fatal , Fígado Gorduroso/patologia , Glicogênio/análise , Humanos , Lactente , Fígado/química , Fígado/patologia , Masculino , Proteínas de Ligação a RNA/sangue
15.
Biol Pharm Bull ; 44(8): 1156-1159, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34092709

RESUMO

Honeybee larvae have been recognized as nutrient-rich food in many countries. Although glycogen, a storage form of glucose in animals, is synthesized in honeybee larvae, there is no information on the structure of glycan and its biological activity. In this study, we successfully extracted glycogen from honeybee larvae using hot water extraction and investigated the structure and biological activity of glycan. It was found that the molecular weight of glycogen from honeybee larvae is higher than that of glycogen from bovine liver and oysters. In addition, treatment of RAW264.7 cells with glycogen from honeybee larvae resulted in a much higher production of tumor necrosis factor (TNF)-α and interleukin (IL)-6 than treatment with glycogen from either bovine liver or oysters. These results suggest that the high molecular weight glycogen from honeybee larvae is a functional food ingredient with immunomodulatory activity.


Assuntos
Abelhas/química , Glicogênio/farmacologia , Fatores Imunológicos/farmacologia , Interleucina-6/metabolismo , Larva/química , Fator de Necrose Tumoral alfa/metabolismo , Animais , Bovinos , Alimento Funcional , Glicogênio/análise , Fatores Imunológicos/análise , Fígado/química , Macrófagos/metabolismo , Camundongos , Peso Molecular , Ostreidae/química , Células RAW 264.7
16.
Meat Sci ; 180: 108560, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34029856

RESUMO

This study assessed the capacity of magnesium supplementation to reduce muscle glycogen loss, ultimate pH and increase plasma magnesium in pasture fed slaughter cattle. Beef cattle (n = 1075) from 14 farms were supplemented with or without magnesium pellets for 7-14 days prior to slaughter. Magnesium was allocated at 9.83 g of elemental magnesium per head per day, while the control diet was balanced to be isoenergetic and isonitrogenous, but contained no added magnesium. Groups of cattle (n = 44) were slaughtered at the same processing plant over two consecutive seasons, from August - September 2016 to May - July 2017. Magnesium supplementation increased muscle glycogen (P < 0.01) in cattle supplied from 2 of 14 farms, and increased plasma magnesium in 4 of 14 farms (P < 0.01). Magnesium supplementation had no effect on overall incidence of ultimate pH between the magnesium and control supplementation groups. The benefits of short term magnesium supplementation prior to slaughter was inconsistent for protecting muscle glycogen.


Assuntos
Magnésio/administração & dosagem , Músculo Esquelético/química , Carne Vermelha/análise , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Feminino , Glicogênio/análise , Concentração de Íons de Hidrogênio , Magnésio/sangue , Masculino , Tasmânia
17.
BMC Vet Res ; 17(1): 121, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726767

RESUMO

BACKGROUND: Glycogen in skeletal muscle is a major source of energy during exercise and an important determinant of endurance capacity, so that its measurement may provide a meaningful marker of athletes' preparation and a possible predictor of performance, both in humans and in equines. Gold standard of glycogen concentration measurement is the histochemical and biochemical analysis of biopsy-derived muscle tissue, an invasive and potentially injuring procedure. Recently, high-frequency ultrasound (US) technology is being exploited in human sports medicine to estimate muscle glycogen content. Therefore, aim of the present study is to evaluate the feasibility of US assessment of muscle glycogen in equines. RESULTS: US images of gluteus medius (GL) and semitendinosus (ST) muscles were obtained on eight healthy horses (3-10 years) before and after a steady-state exercise on treadmill (velocity: 4.0-12.5 m/s; duration: 2-20 min; heart rate: 137-218 b/min). Average image greyscale intensity was significantly different between GL and ST, both before and after exercise (p < 0.001). Comparing baseline and post-exercise US images, significant increase in greyscale intensity has been observed in ST (p < 0.001), but not in GL (p = 0.129). The volume of the exercise was significantly correlated with exercise-dependent change in image intensity (R2 = 0.891), consistent with a reduction of glycogen muscle stores resulting from aerobic activity. CONCLUSIONS: US technique evidences also in horses muscle changes possibly associated to glycogen utilisation during exercise. Present results on a small sample need to be further confirmed and provide preliminary data warranting future validation by direct glycogen measurement through biopsy technique.


Assuntos
Glicogênio/análise , Cavalos , Músculo Esquelético/química , Músculo Esquelético/diagnóstico por imagem , Animais , Teste de Esforço/veterinária , Estudos de Viabilidade , Feminino , Masculino , Ultrassonografia de Intervenção/veterinária
18.
Meat Sci ; 175: 108466, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33610088

RESUMO

This study investigated the effects of age of animal and days post-mortem (PM) on meat quality of Boer goats. Twenty-four (24) wether Boer goats of two age groups (2YO group: 2 years old and 9MO: 6-9 months, with 12 animals/group) were slaughtered in a commercial processing plant. The pH@Temp18 was estimated to be above 6 in both age groups with higher (P < 0.01) values in 2YO goats. The PM storage for 14 days reduced the shear force in both age groups (P < 0.01). 2YO goat muscles (longissimus and semimembranosus) exhibited higher (P < 0.01) Thiobarbituric acid reactive substance values (TBARS), indicating increased lipid oxidation. Glycogen (P < 0.01) and lactate content (20 min post-slaughter) in longissimus of 9MO were lower compared to 2YO, and total muscle glycogen concentration was lower (P < 0.01) in both age groups below the threshold levels. Hence, as hypothesized, age and days PM proved to play crucial roles on Boer meat quality.


Assuntos
Fatores Etários , Músculo Esquelético/química , Carne Vermelha/análise , Animais , Qualidade dos Alimentos , Glicogênio/análise , Cabras/fisiologia , Ácido Láctico/análise , Masculino , Resistência ao Cisalhamento , Substâncias Reativas com Ácido Tiobarbitúrico/análise
19.
Biometals ; 34(2): 245-258, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33389338

RESUMO

Cadmium, one of the more hazardous environmental contaminants, has been proposed as a metabolic disruptor. Vanadium has emerged as a possible treatment for metabolic diseases. Both metals are important in public health. We aimed to investigate whether vanadium treatment is effective against metabolic disturbances caused by chronic exposure to the lowest-observable adverse effect level of cadmium. Male Wistar rats were exposed to cadmium (32.5 ppm) in drinking water for 3 months. Metabolic complications such as overweight, visceral adipose gain, hyperglycemia, impaired glucose tolerance, and dyslipidemia were detected, and low glycogen levels and steatosis were observed in the tissues. Then, the control and treated animals were subdivided and treated with a solution of 5 µM NaVO3/kg/twice a week for 2 months. The control-NaVO3 group did not show zoometric or metabolic changes. A strong interaction of NaVO3 treatment over cadmium metabolic disruption was observed. The vanadium accumulation diminished cadmium concentration in tissues. Also, vanadium interaction improved glucose homeostasis. The major effect was observed on glycogen synthesis, which was fully recovered in all tissues analyzed. Additionally, vanadium treatment prevented overweight and visceral fat accumulation, improving BMI and the percentage of fat. However, NaVO3 treatment did not have an effect on dyslipidemia or steatosis. In conclusion, this work shows that vanadium administration has a strong effect against metabolic disturbances caused by chronic cadmium exposure, observing powerful interaction on glucose homeostasis.


Assuntos
Modelos Animais de Doenças , Glicogênio/análise , Síndrome Metabólica/tratamento farmacológico , Vanadatos/farmacologia , Animais , Cádmio/administração & dosagem , Masculino , Síndrome Metabólica/induzido quimicamente , Ratos , Ratos Wistar
20.
Meat Sci ; 174: 108418, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33454640

RESUMO

Pork quality is a product of the rate and extent of muscle pH decline paced by carbohydrate metabolism postmortem. The beta-adrenergic agonist ractopamine (RAC) alters muscle metabolism but has little impact on pork quality. The objective of this study was to determine how feeding RAC alters postmortem carbohydrate metabolism in muscle. Muscle pH was higher early postmortem in pigs fed RAC for 2 wks compared to control, while other time points and temperatures were largely unaffected. Early postmortem, muscle lactate levels were reduced (P < 0.05) after feeding RAC for 1 and 2 wks. Similarly, pigs fed RAC for 4 wks had reduced (P < 0.05) glycogen levels early postmortem compared to control pigs, but unexpectedly, L* values (lightness) increased (P < 0.05) after inclusion of RAC in the diet for 4 wk. These data show RAC feeding reduces glycogen content and changes lactate accumulation postmortem, but raise questions about the role glycolytic flux has in driving pork quality development.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Fenetilaminas/farmacologia , Carne de Porco/análise , Agonistas Adrenérgicos beta/administração & dosagem , Animais , Cor , Feminino , Glicogênio/análise , Concentração de Íons de Hidrogênio , Ácido Láctico/análise , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fenetilaminas/administração & dosagem , Sus scrofa/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...